172 research outputs found

    Quantification of lung perfusion blood volume by dual-energy CT in patients with and without chronic obstructive pulmonary disease

    Get PDF
    Purpose: In chronic obstructive pulmonary disease (COPD), pulmonary vascular alteration is one of the characteristic features. Recently, software has been used for the quantification of lung iodine perfusion blood volume (iPBV) using dual-energy CT, allowing objective evaluation. The purpose of this study was to evaluate the quantification of lung PBV with and without COPD. Materials and Methods: This study was approved by the Institutional Review Board. Sixty-two subjects who had undergone a respiratory function test within one month underwent dual-energy CT angiography. The subjects were divided into two groups: with (n=14) and without (n=48) COPD. We evaluated the quantification of lung iPBV in the early phase and late phase using Syngo softwarepost contrast. Associations between lung iPBV and respiratory function (forced expiratory volume in 1 second/forced vital capacity; FEV1/FVC) and the percentage area of emphysema (%LAA-950) were also evaluated. Results: In the early phase, lung iPBV values were 20.1Β±5.5 and 30.6Β±7.6 Hounsfield Unit (HU) in those with and without COPD, respectively, with a significant difference between them (Conclusions: Quantification of lung iPBV reflects reduced pulmonary perfusion in patients with COPD. It may be useful for objective evaluation of the pulmonary blood flow in patients with COPD

    Efficacy and safety of systemic chemotherapy and intra-arterial chemotherapy with/without radiotherapy for bladder preservation or as neo-adjuvant therapy in patients with muscle-invasive bladder cancer: A single-centre study of 163 patients

    Get PDF
    Introduction Patients with muscle-invasive bladder cancer (MIBC) often undergo various preoperative treatments to improve survival; however, their efficacy and safety remain unclear. Materials and methods The anti-tumour effects and adverse events were evaluated in 163 MIBC patients who received systemic chemotherapy (SC, n = 34), intra-arterial chemotherapy (IAC, n = 50), or combined IAC and radiotherapy (IAC + R, n = 79). Results Pathological complete responses were observed in 17.6%, 22.0%, and 43.0% of patients in the SC, IAC, and IAC + R groups, respectively, with respective 5-year overall survival rates of 42.0%, 46.7%, and 50.3%. Multivariate analysis showed that successful IAC + R protocol administration was a significant predictor for survival (hazard ratio = 0.16, p = 0.028). The incidence of severe adverse events was higher in the IAC + R group (36.7%) than in the SC (9.8%) and IAC groups (16.0%). Conclusions IAC + R was useful for patients with MIBC. Successful completion and optimal patient selection were important for this treatment strategy

    Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder, but specific genetic factors underlying risk remain elusive. To assess the role of structural variation in ADHD, we identified 222 inherited copy number variations (CNVs) within 335 ADHD patients and their parents that were not detected in 2026 unrelated healthy individuals. Although no excess CNVs, either deletions or duplications, were found in the ADHD cohort relative to controls, the inherited rare CNV-associated gene set was significantly enriched for genes reported as candidates in studies of autism, schizophrenia and Tourette syndrome, including A2BP1, AUTS2, CNTNAP2 and IMMP2L. The ADHD CNV gene set was also significantly enriched for genes known to be important for psychological and neurological functions, including learning, behavior, synaptic transmission and central nervous system development. Four independent deletions were located within the protein tyrosine phosphatase gene, PTPRD, recently implicated as a candidate gene for restless legs syndrome, which frequently presents with ADHD. A deletion within the glutamate receptor gene, GRM5, was found in an affected parent and all three affected offspring whose ADHD phenotypes closely resembled those of the GRM5 null mouse. Together, these results suggest that rare inherited structural variations play an important role in ADHD development and indicate a set of putative candidate genes for further study in the etiology of ADHD

    Proteoglycan-Specific Molecular Switch for RPTPσ Clustering and Neuronal Extension

    Get PDF
    Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPσ ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPσ and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor

    Fstl1 Antagonizes BMP Signaling and Regulates Ureter Development

    Get PDF
    Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling

    Vesicoureteral Reflux and Other Urinary Tract Malformations in Mice Compound Heterozygous for Pax2 and Emx2

    Get PDF
    Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice. Pax2+/βˆ’;Emx2+/βˆ’ mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of Pax2+/βˆ’;Emx2+/βˆ’ embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings may help understand VUR and CAKUT in humans

    Genome-Wide Analysis of Gene Expression in Primate Taste Buds Reveals Links to Diverse Processes

    Get PDF
    Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM) procured fungiform (FG) and circumvallate (CV) taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology
    • …
    corecore